Math 101 Final Exam Date: January 17, 2010 Duration: 120 minutes

Calculators, mobile phones, pagers and all other mobile communication equipments are not allowed.

Answer the following questions:

1. (2+2 pts.) Evaluate the following limits (if they exist).

(a)
$$\lim_{x\to 0} \frac{(3x - \tan x)^2}{x^2}$$

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{1+x^2}}{2x+1}$$

2. (4 pts.) Find the value of the constant A such that the following function is continuous at x = 0.

$$f(x) = \begin{cases} 3\cos x - A & \text{if } x < 0, \\ 2 - x^2 & \text{if } x \ge 0. \end{cases}$$

- 3. (4 pts.) Find $\frac{dy}{dx}$ where $y = \frac{(x^2 + 1)^3 \tan x}{x}$. (Do NOT simplify the answer.)
- 4. (4 pts.) Determine a such that the average value of the function f(x) = (ax 1)(x a) on the interval [-1, 1] is equal to 4.
- 5. (4 pts.) Sketch a graph of f(x) that satisfies ALL of the following conditions.

f(0) = 0	
$\lim_{x \to -\infty} f(x) = 2$	$\lim_{x \to +\infty} f(x) = +\infty$
$\lim_{x \to 1^-} f(x) = +\infty$	$\lim_{x \to 1^+} f(x) = -\infty$
$f'(x) < 0 \text{ on } (-\infty, 0)$	$f'(x) > 0$ on $(0,1)$ and $(1,+\infty)$
$f''(x) < 0 \text{ on } (-\infty, 0) \text{ and } (1, -1)$	

- 6. (4 pts.) Let f be a function such that f(0) = 0 and f'(c) < 2, $\forall c \in \mathbb{R}$. Show that f(x) < 2x, $\forall x > 0$.
- 7. (4 pts.) Let $f(x) = \int_1^{2x-x^2} \frac{1}{t^4+2} dt$. Find the local maximum of f(x).
- 8. (2+2 pts.) Evaluate the following integrals.

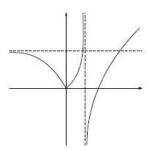
(a)
$$\int_0^{\frac{\pi}{2}} \cos(\sin x) \cos x \, dx$$

(b)
$$\int \frac{(7 + \frac{1}{z^2})^9}{x^3} dx$$

- 9. (4 pts.) Set up an integral for the area between the curves $y = x^2 + 2x$ and y = 28 x
- 10. (2+2 pts.) Set up an integral for the volume of the solid generated by revolving the region bounded by $y = x^2 + 4$, y = 1, x = 0 and x = 2 about:
 - (a) the line y = -2,
 - (b) the line x = 4.

$$\begin{aligned} &1. \ \, (4 \text{ pts.}) \ \, (a) \ \, \lim_{x \to 0} \frac{\left(3x - \tan x\right)^2}{x^2} = \lim_{x \to 0} \left(\frac{3x - \tan x}{x}\right)^2 = \lim_{x \to 0} \left(\frac{3x}{x} - \frac{\tan x}{x}\right)^2 = 4. \\ &(b) \ \, \lim_{x \to -\infty} \frac{\sqrt{1 + x^2}}{2x + 1} = \lim_{x \to -\infty} \frac{\sqrt{x^2(\frac{1}{x^2} + 1)}}{x(2 + \frac{1}{x})} = \lim_{x \to -\infty} \frac{-x\sqrt{\frac{1}{x^2} + 1}}{x(2 + \frac{1}{x})} = -\frac{1}{2}. \end{aligned}$$

- $\begin{array}{l} \text{2. (4 pts.) } f \text{ is continuous at 0 if } \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) = 2. \\ \text{We have } \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2 x^2) = 2, \text{ and } \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (3\cos x A) = 3 A. \\ \text{Thus, } f \text{ is continuous at 0 when } A = 1. \end{array}$
- 3. (4 pts.) $y' = \frac{(3(x^2+1)^2(2x)\tan x + (x^2+1)^3\sec^2 x)x (1)(x^2+1)^3\tan x}{x^2}$
- 4. (4 pts.) $f_{ave} = \frac{1}{2} \int_{-1}^{1} (ax^2 (a^2 + 1)x + a) dx = \frac{1}{2} \left(\frac{a}{3}x^3 \frac{a^2 + 1}{2}x^2 + ax \right) \Big]_{-1}^{1} = \frac{4a}{3}$. Since $f_{ave} = 4$, we have a = 3.
- 5. (4 pts.) A possible graph of f(x)



- 6. (4 pts.) f(t) is differentiable $\forall t \in \mathbb{R}$, hence, f(t) is continuous $\forall t \in \mathbb{R}$. Applying the MVT on [0, x], $\exists c \in (0, x)$ such that $f'(c) = \frac{f(x) f(0)}{x 0} = \frac{f(x)}{x}$. Since $f'(t) < 2 \ \forall \ t \in \mathbb{R}$, we derive that $\frac{f(x)}{x} < 2 \ \forall \ x > 0$. Hence, $f(x) < 2x, \ \forall x > 0$.
- 7. (4 pts.) $f(x) = \int_1^{2x-x^2} \frac{1}{t^4+2} dt$. From $f'(x) = \frac{1}{(2x-x^2)^4+2}(2-2x)$ we get one critical number x=1. Since f'(x) > 0 on $(-\infty, 1)$ and f'(x) < 0 on $(1, +\infty)$: at x=1, f has a local maximum and f(1) = 0.
- 8. (4 pts.) Evaluate
 - (a) By substitution, let $u = \sin x$, $du = \cos x \, dx$. $\int_0^{\frac{\pi}{2}} \cos(\sin x) \cos x \, dx = \int_0^1 \cos(u) \, du = \sin u \Big|_0^1 = \sin 1.$
 - (b) By substitution, let $u = 7 + x^{-2}$, $du = -2x^{-3} dx$. $\int \frac{(7 + \frac{1}{x^2})^9}{x^3} dx = -\frac{1}{2} \int \frac{-2(7 + \frac{1}{x^2})^9}{x^3} dx = -\frac{1}{2} \int u^9 du = -\frac{1}{2} \frac{u^{10}}{10} + C = -\frac{1}{20} \left(7 + \frac{1}{x^2}\right)^{10} + C.$
- 9. (4 pts.) To find the Points of intersection between the two curves we put $x^2 + 2x = 28 x$. That is, $x^2 + 3x 28 = (x 4)(x + 7) = 0$. The two curves intersect at x = -7, x = 4. Therefore, the area of the region enclosed between the two curves is:

$$A = \int_{-\pi}^{4} ((28 - x) - (x^2 + 2x)) dx.$$

- 10. (4 pts.)
 - (a) About the line y=-2: $V=\int_0^2\pi((2+x^2+4)^2-(1+2)^2)\ dx=\int_0^2\pi((x^2+6)^2-(3)^2)\ dx$.
 - (b) About the line x = 4: $V = \int_0^2 2\pi ((4-x)((x^2+4)-(1))) dx$.